

Reg. No.:

Jame :

Semester B.Sc. Degree CBCSS (OBE) Regular Examination, November 2021 (2019 Admn. Only) CORE COURSE IN MATHEMATICS 5B07 MAT: Abstract Algebra

me: 3 Hours

Max. Marks: 48

PART – A (Short Answer)

answer any 4 questions. Each question carries 1 mark.

- Define abelian group with an example.
- Is Z* under division a binary operation. Justify.
- . Every infinite order cyclic group is isomorphic to
- . What is the order of alternating group An?
- . State Lagrange's theorem.

 $(4 \times 1 = 4)$

PART – B (Short Essay)

inswer any eight questions. Each question carries 2 marks.

- In a group G with binary operation *, prove that there is only one element e in G such that e * x = x * e = x, $\forall x \in G$.
- Prove that $(\mathbb{Q}^+, *)$, where * is defined by $a * b = \frac{ab}{2}$; $a, b \in \mathbb{Q}^+$ is a group.
- For sets H and K, Let $H \cap K = \{x/x \in H \text{ and } x \in K\}$, show that if H and K are subgroups of a group G, then $H \cap K$ is also a subgroup of G.

- 9. Prove that the order of an element of a finite group divides the order of group
- 10. Explain the elements of group S₃.
- 11. Find the order of (14)(3578) in S₈.
- 12. Prove that every permutation σ of a finite set is a product of disjoint cycles.
- 13. Determine the permutation (18)(364)(57) in S₈ is odd or even.
- 14. State fundamental homomorphism theorem.
- 15. Find the order of $\mathbb{Z}_6/<3>$.
- 16. Let $\phi: G \to G'$ be a group homomorphism. Prove that Ker ϕ is a subgroup of G.

PART - C (Essay)

Answer any four questions. Each question carries 4 marks.

- 17. Prove that subgroup of a cyclic group is cyclic.
- 18. Let G be a group and $a \in G$. Prove that $H = \{a^n/n \in \mathbb{Z}\}$ is the smallest subgroup of G that contains a.
- 19. Determine whether the set of all n × n matrices with determinant -1 is a subground of G.
- Let A be a non-empty set. Prove that S_A, the collection of all permutations
 A is group under permutation multiplication.
- 21. Define rings. Prove that $(\mathbb{Z}_n, +_n, \times_n)$ is a ring.
- 22. Prove that every group is isomorphic to a group of permutations.
- 23. Prove that $\gamma: \mathbb{Z} \to \mathbb{Z}_n$; where $\gamma(m) = r$; where r is the remainder when m divided by n is a homomorphism.

PART – D (Long Essay)

Answer any two questions. Each question carries 6 marks.

- 24. Prove that every integral domain is a field.
- 5. Let H be a subgroup of G, then prove that the left coset multiplication is well defined by the equation (aH)(bH) = (abH) if and only if H is a normal subgroup of G.
- 6. a) Find all cosets of the subgroup < 2 > of \mathbb{Z}_{12} .
 - b) Prove that every group of prime order is cyclic.
- 7. Let G be a cyclic group with n elements generated by a. Let $b \in G$ and $b = a^s$, then prove that b generates a cyclic subgroup H of G containing $\frac{n}{d}$ elements, where d is the gcd of n and s. (2×6=12)